Contact for the resource

University of Bristol, School of Geographical Sciences

2 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 2 / 2
  • Categories  

    This dataset collection comprises solid and liquid coastal freshwater fluxes from land ice in Greenland, Canadian Arctic Archipelago, Svalbard and Iceland. Tundra runoff from all these land areas is also included. The fluxes have been routed to coastal grid cells around the margins of the land areas. The fluxes are provided in three fields: tundra, surface runoff over ice, solid ice discharge (icebergs, for Greenland only). The data are on a 5 km polar stereographic projection with a monthly time step and are in a netcdf format. Detailed description of the derivation of the data can be found in an associated paper in JGR-Oceans: Bamber J.L, et al "Land ice freshwater budget of the Arctic and North Atlantic Oceans. Part I: Data, methods and results". This dataset contains monthly resolution runoff and annual resolution discharge (at monthly time steps) from 01/01/1958 to 31/12/2016.

  • Categories  

    The cross-disciplinary themes will result in a diverse data catalogue. The ship collected data will be in the form of sea surface meteorology (2-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity); atmospheric carbon dioxide (pCO2); biological, chemical and physical properties and processes in the marine photic zone (carbonate chemistry - pCO2, total alkalinity, pH, DIC; dissolved gases - oxygen; nutrient concentrations, ammonium regeneration, nitrification, nitrogen fixation, zooplankon ecology, chlorophyll concentration, photosynthetic pigment composition, bacterial production, phytoplankton and bacterial speciation, concentrations of biogenic trace compounds such as dimethyl sulphide/DMS and dimthylsulphoniopropionate/DMSP, salinity, temperature, zooplankon ecology) and bioassays of these same parameters under different future IPCC CO2 and temperature scenarios. The long-term (18 month) laboratory based mesocosm experiments will include data on individual organism response (growth, immune response, reproductive fitness) under different future IPCC CO2 and temperature scenarios in rocky intertidal, soft sediment and calcareous biogenic habitats, as well as the effects on commercially important species of fish and shellfish. The analysis of sediment cores will provide greater resolution of the paleo record during the Paleocene-Eocene Thermal Maximum (PETM). Data will be used to aid the parameterisation of coastal and continental shelf seas (Northern Europe and the Arctic) model runs as well as larger scale global models. The shipboard fieldwork will take place around the UK, in the Arctic Ocean and the Southern Ocean. The mesocosms will look at temperate marine species common to UK shelf seas. Sediment cores have been collected from Tanzania. The models will look from the coastal seas of Northern Europe to the whole globe. Data to be generated will include data collected at sea, short-term (2-3 day) ship-board bioassays, from long-term (18 month) laboratory based mesocosm experiments and reconstructed paleo records from sediment cores. The 5 year UK Ocean Acidification Research Programme is the UK’s response to growing concerns over ocean acidification. Aims: 1 - to reduce uncertainties in predictions of carbonate chemistry changes and their effects on marine biogeochemistry, ecosystems and other components of the Earth System; 2 - to understand the responses to ocean acidification, and other climate change related stressors, by marine organisms, biodiversity and ecosystems and to improve understanding of their resistance or susceptibility to acidification; 3 - to provide data and effective advice to policy makers and managers of marine bioresources on the potential size and timescale of risks, to allow for development of appropriate mitigation and adaptation strategies. The study unites over 100 marine scientists from 27 institutions across the UK. It is jointly funded by Department for Environment, Food and Rural Affairs (Defra), the Natural Environment Research Council (NERC) and Department of Energy and Climate Change (DECC).